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Abstract
The effects of confinement and magnetic fields on the effective electron Landé g factor of
GaAs–Ga1−x AlxAs cylindrical quantum well wires are studied. Calculations were carried out
via the Ogg–McCombe effective Hamiltonian which is used to describe the non-parabolicity
and anisotropy effects on the electron states in the conduction band. The applied magnetic field
is taken along the wire axis, and the Schrödinger equation corresponding to electron spin
projections parallel and antiparallel to the magnetic field is solved by using an expansion of the
electron wavefunctions in terms of two-dimensional harmonic oscillator wavefunctions.
Calculations for the electron g‖ factor in GaAs–Ga1−xAlx As cylindrical quantum well wires are
compared with results from previous theoretical work. Moreover, the present results clearly
indicate the importance of taking into account the non-parabolicity/anisotropy of the conduction
band if one is interested in a quantitative understanding of the electron g factor in
GaAs–Ga1−x AlxAs quantum well wires.

1. Introduction

The study of the interaction between single-particle spins
and the solid-state environment has been the subject of a
considerable amount of work in the last few years. In
particular, studies on the properties of the electron g factor for
semiconductor bulk materials [1], quantum wells (QWs) [2–4],
quantum well wires (QWWs) [5, 6], quantum dots (QDs) [7],
and superlattices (SLs) [8] have attracted the community’s
attention both from the theoretical and experimental points
of view, due to the potential applications in spintronics
and optoelectronic devices [9]. In semiconductors and its
heterostructures, the effective g factor determines the spin
splitting of carrier bands and, therefore, influences the spin
dynamics and spin resonance of such materials. Also,
manipulation of the electron spin may be used in so-called
spin-based electronics, where preservation of the electron spin
coherence is required [9]. On the other hand, the electron g
factor is very important in the understanding of the physical
properties of a two-dimensional electron gas (2DEG), in which
the quantum Hall effect (QHE) is observed. For example,

in a 2DEG the spin gap is much larger than the single-
particle Zeeman energy which may be understood in terms of
the enhanced effective g factor due to the electron–electron
exchange interaction [10]. In addition, the fractional QHE
was studied in the limit of zero g factor [11] in an effort to
find large distortions of the spin field including many flipped
spins (skyrmions) which are expected to be important in the
weak magnetic field limit. The zero g factor of the sample
may be tuned, for example, by the application of hydrostatic
pressure [12].

Investigations on the properties of the effective Landé g
factor have been carried out mainly for QWs and QDs, whereas
the case of QWWs has received much less attention. QWWs
have proven to be of great value in the active development
of electronic and optoelectronic devices, such as nanowire
field-effect transistors, crossed, axial, and radial nanowire
heterostructures, and so on [13]. Most relevant for the present
work is the theoretical study reported by Kiselev et al [5], who
developed a theory of the Zeeman effect for electrons in one-
and zero-dimensional semiconductor systems by using an 8×8
Kane model, and investigated the properties of the electron g
factor in QWWs and QDs in the absence of magnetic fields.
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The aim of the present work is to study the effects of
confinement and magnetic fields on the effective electron
Landé g factor in GaAs–Ga1−x AlxAs cylindrical quantum well
wires by using the Ogg–McCombe effective Hamiltonian [14],
which takes into account the non-parabolicity and anisotropy
effects on the electron states in the conduction band. Section 2
describes the present theoretical framework, in which we study
the motion of a conduction electron in a QWW under a
magnetic field applied along the wire axis and propose an
expression for evaluating the effective Landé factor of such
a system. Section 3 is concerned with the present theoretical
results and discussion. Conclusions are given in section 4.

2. Theoretical framework

In order to study the confinement and magnetic field effects
on the electron g factor for GaAs–Ga1−xAlx As QWWs under
magnetic fields applied along the wire axis (z direction), we
assume the effective mass approximation and take into account
the non-parabolicity and anisotropy of the conduction band via
the Ogg–McCombe effective Hamiltonian [14], i.e.,

Ĥ = h̄2

2
�̂K 1
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2
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]
+

+ a6 Bσ̂z K̂ 2
z

+ V (x, y). (1)

In the above expression, �̂K = −i∇ + e
h̄c

�̂A, �̂σ is a
vector whose components are the Pauli matrices, lB is the
Landau length, and m(x, y) and g(x, y) are the position-
dependent effective mass and Landé g factor, respectively [15],
corresponding to the two different building materials forming
the QWW. The height of the electron confining potential
V (x, y) was taken as the 60% of the band-gap difference
between Ga1−xAlx As and GaAs. The coefficients a1, a2,
a3, a4, a5, and a6 are constants obtained by a fitting of
magnetospectroscopic measurements for bulk GaAs [16]3. As
pointed out by Golubev et al [16], the terms proportional
to a1 and a3 in the Ogg–McCombe effective Hamiltonian
govern the energy dependence of the cyclotron effective
mass. The term proportional to a2 gives the diamagnetic
shift of the Landau electronic levels, whereas the spin-
dependent terms, proportional to a4, a5, and a6, contribute to
changes in the electron Landé factor of the heterostructure.
To our knowledge, [16] is the only work in which values
of the coefficients ai (i = 1, 2, . . . , 6) were reported
via experimental measurements. Other authors have also
used the same coefficients in order to study the magnetic
field dependence of the electron spin relaxation in n-type
semiconductors [17]. The values of ai (i = 1, 2, . . . , 6) were
considered as the same in the well and barrier materials3.

3 We have used the values (a1, a2, a3) = (−2.9,−2.6,−1.2)× 106 meV Å
4

and (a4, a5, a6) = (9.7,−0.8, 4.9) meV Å
2

T−1 in the present theoretical
calculations.

The wavefunctions of (1) may be chosen as

� j (�r) =
(
ψ j,↑( �ρ)

ψ j,↓( �ρ)

)
eikz z, (2)

where �ρ = (x, y), kz is the electron wavevector along
the wire axis and ψ j,ms the electron wavefunctions in the
plane perpendicular to the wire axis for a given value of
the ms projection (↑ or ↓) of the electron spin along the
magnetic field direction. Here we have taken kz = 0, which
corresponds to focusing on the lowest quasi-one-dimensional
(wire) conduction electron subband edge. Such approximation
was successfully used in the study of the effective Landé factor
for semiconductor QWs [4] at low temperatures and very low
electron densities, so many-particle effects in the conduction
band may be disregarded and a one-electron Hamiltonian
may be used to describe the conduction electron states. The
Hamiltonian (1) then becomes diagonal and the ↑ spin-up and
↓ spin-down states are uncoupled. The Schrödinger equation
is therefore given by

( Ĥ↑ 0

0 Ĥ↓

) (
ψ j,↑( �ρ)

ψ j,↓( �ρ)

)
= E

(
ψ j,↑( �ρ)

ψ j,↓( �ρ)

)
, (3)

where Ĥ↑ and Ĥ↓ describe the spin-up and spin-down electron
states, respectively, and are obtained from the kz = 0 diagonal
components of (1). The vector potential may be chosen as �A =
1
2
�B × �r and the wavefunctions ψ j,ms expanded in terms of the

two-dimensional harmonic oscillator eigenfunctions written in
polar coordinates, i.e.,

ψ j,ms ( �ρ) =
∑

k

C jk(ms)φk( �ρ), (4)

φk( �ρ) = Ank,lk

[
ρ√
2lB

]|lk |
L|lk |

nk

(
ρ2

2l2
B

)
e
− ρ2

4l2B
+iθ lk

, (5)

where Ank ,lk = [ nk !
2π l2

B (nk+|lk |)! ]
1
2 and L|lk |

nk are the associated

Laguerre polynomials. Expansion (4) may be used to write
the Hamiltonian Ĥms in the harmonic oscillator representation,
with corresponding eigenvalues obtained by solving the
algebraic problem

∑
k

[
H jk

ms
− En(ms)δ jk

]
Cnk(ms) = 0, (6)

where H jk
ms = 〈φk( �ρ)|Ĥms |φ j ( �ρ)〉 and k correspond to radial

and magnetic quantum numbers, i.e., k ≡ (nk, lk) (see the
appendix for details). Here, we are particularly interested in
the electron g factor associated with the ground state ↑ and ↓
energy levels, i.e.,

g‖ = E0(↑)− E0(↓)
μB B

, (7)

where μB is the Bohr magneton. Note that the above
expression, which defines the effective electron Landé g‖ factor
in the wire axis direction, is a consequence of the decoupling
of the spin-up and spin-down electron states in the kz = 0
approximation, and that g‖ may be a function both of the
applied magnetic field and structural parameters of the wire.
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Figure 1. Electron energy associated with the bottom (kz = 0) of the
first conduction electron subband, for spin-up (solid lines) and
spin-down (dashed lines) states in GaAs–Ga0.65Al0.35As cylindrical
QWWs as a function of the wire radius. Calculations were performed
for B = 5 T and B = 20 T.

3. Results and discussion

In the present work we have focused on GaAs–Ga1−x AlxAs
cylindrical QWWs, with Al proportion x = 0.35, under
magnetic fields applied along the wire axis. Figure 1 displays
the electron energies corresponding to the first conduction
electron subband at kz = 0, as functions of the wire radius,
and associated with the electron spin orientations parallel and
antiparallel to the magnetic field. Calculations were carried out
for two different values of the applied magnetic field. One may
notice that, for the lowest values of the wire radius, the spin-
up energy is slightly higher than the spin-down energy. On the
other hand, for the larger values of the wire radius considered in
the calculations, the spin-down energy is higher than the spin-
up energy. This behavior is due to a change in the sign of the
effective g‖ factor, as detailed below.

The electron spin splitting is more remarkable at large
values of the magnetic field. In figure 2 we show the
magnetic-field dependence of the electron g‖ factor in
GaAs–Ga0.65Al0.35As cylindrical QWWs for three different
values of the wire radius. The corresponding spin-up and
spin-down electron energies are also displayed in the inset.
The behaviors of the electron energy, for a given projection
of the electron spin, result from a competition between the
magnetic field and QWW barrier-potential confining effects
on the electron wavefunction. Of course, the electron energy
decreases as the wire radius is increased due to the decrease
in the confinement caused by the wire potential. On the
other hand, the electron energy increases with the strength of
the magnetic field, due to the increase in the wavefunction
localization induced by the applied magnetic field. One may
expect, therefore, an effective g‖ factor dependent on both
the QWW radius and the applied magnetic field (cf figure 2).
Moreover, one may note from figure 2 that the effective g‖
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Figure 2. Magnetic-field dependence on the electron g‖ factor for
GaAs–Ga0.65Al0.35As cylindrical QWWs in three different values of
the wire radius. Ground state energies for spin-up (solid lines) and
spin-down (dashed lines) states are also displayed in the inset.
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Figure 3. Electron Landé g‖ factor of GaAs–Ga0.65Al0.35As QWWs
as a function of the wire radius. Solid, dashed and dotted lines
correspond to B = 5 T, 10 T, and 20 T, respectively. The inset shows
the magnetic-field dependence of the g‖ factor in a 47 Å width
GaAs–Ga0.75Al0.25As QWW.

factor is essentially independent of the magnetic field in the
low magnetic field limit, whereas it increases as the magnetic
field is increased. It is apparent from figure 3 that the effective
g‖ factor changes its sign at a certain value of the QWW
radius, as the electron g factor for the GaAs well is negative
whereas it is positive for the Ga0.65Al0.35As barrier. For a given
value of the applied magnetic field and for a sufficiently small
value of the wire radius (R < lB ), the ground state electron
wavefunction penetrates the barrier material, and therefore the
effective g‖ factor is positive. On the other hand, when the wire
radius increases, the wavefunction becomes more localized in
the well material and, as a consequence, the effective electron
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Figure 4. Magnetic-field dependence of the QWW radius for which
the electron Landé g‖ factor vanishes.

g‖ factor diminishes until it reaches the −0.44 GaAs limiting
value for a large wire radius. Thus, the electron g‖ factor may
be manipulated by changing the geometrical configuration of
the wire. In addition, the sign of the effective g‖ factor may
be changed by the applied magnetic field, as we have shown in
the inset of figure 3. The wire radius R0 for which the electron
g‖ factor is zero is expected to be a function of the applied
magnetic field. Present calculations for R0 are displayed in
figure 4, and are found in good agreement with the numerical
result reported by Kiselev and co-workers [5] who obtained
this value at about 50 Å.

In figure 5, the present theoretical results for the electron
g‖ factor at B = 1 T, as functions of the wire radius,
are compared with the numerical data reported in [5] for
GaAs–Ga0.65Al0.35As QWWs at B = 0 T. We look at the
Ogg–McCombe Hamiltonian; this is an effective Hamiltonian
which is diagonal and spin independent at B = 0 T. The
spin-dependent terms vanish at B = 0 T, and therefore
the Ogg–McCombe Hamiltonian describes spin-degenerate
electron states in the absence of the applied magnetic field. By
using an Ogg–McCombe Hamiltonian as a theoretical model
in order to calculate the conduction electron effective Landé
factor, one needs a spin splitting of the electron states and,
therefore, a nonzero applied magnetic field. This is an obvious
reason why we have not computed the effective g‖ factor at
B = 0 T. Nevertheless, the present theoretical procedure
is useful for studying the magnetic field dependence of the
electron g‖ factor in semiconductor heterostructures. We
have used a logical path in order to support the comparison
between our theoretical results at low magnetic fields and the
numerical data reported by other authors [5] at B = 0 T.
First, we have proven that the effective g‖ factor depends
weakly on the magnetic field at low magnetic field values (cf
figure 2). Second, we have shown that our results for low
magnetic fields are in good agreement with the theoretical
calculations reported by Kiselev et al [5] for B = 0 T (cf
figure 5). In this sense, no important differences between our

0 100 200 300
-0.6

-0.3

0.0

0.3

0.6

g |
|

R (Å)

 B = 0 T from reference  [5]

B = 1 T

Figure 5. Electron Landé g‖ factor as a function of the wire radius
for GaAs–Ga0.65Al0.35As QWWs for B = 1 T (solid line). The
B = 1 T dashed line is obtained by disregarding the
non-parabolicity/anisotropy contributions (ai = 0 in equation (1)).
Solid circles show the numerical results reported by Kiselev et al [5].

theoretical results for sufficiently low magnetic-field values
and theoretical results at B = 0 T obtained by using other
numerical procedures are expected to occur.

The good agreement between our theoretical results and
those reported in [5] may be understood in terms of the
inclusion of remote-band effects, i.e., anisotropy and non-
parabolicity of the conduction band in both models. Notice
that Kiselev et al [5] calculated the electron Landé factor by
using an 8×8 Kane model which involves mixing between the
lowest conduction band 
6c and the highest valence bands 
7v

and 
8v. The present calculation involves non-parabolicity and
anisotropy effects being taken into account [16, 18] through the
coupling between the lowest 
6c conduction band, 
7v and 
8v

valence bands, and the 
7c and 
8c p-antibonding conduction
bands in GaAs. This leads to a 14 × 14 Hamiltonian,
which may be reduced to a 2 × 2 conduction-band effective
Hamiltonian, i.e., the Ogg–McCombe Hamiltonian [16, 18] (cf
equation (1)). In both models the influence of remote bands
is taken into account, via a �k · �p procedure (as in [5]), or by
using the effective Ogg–McCombe Hamiltonian, depending
on the phenomenological parameters ai . Therefore one may
expect similar results from the two theoretical models. Note
that figure 5 also displays the B = 1 T effective g‖ factor, as
a function of the wire radius, disregarding the non-parabolicity
and anisotropic terms in the Ogg–McCombe Hamiltonian, i.e.,
setting the coefficients ai = 0 (i = 1, 2, 3, . . . , 6) in (1)
(see the dashed line in figure 5). Previous work on quantum
wells [4] has shown that the agreement between theory and
experiment is quite poor when anisotropy and non-parabolicity
are neglected. Although there are no experimental data against
which we can compare, calculations displayed in figure 5
clearly show that the inclusion of these effects substantially
changes the calculated g‖ factor.
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4. Conclusions

Summarizing, we have studied the effects of both the
QWW confinement and applied magnetic field on the
electron g‖ factor in GaAs–Ga1−xAlx As cylindrical QWWs.
Theoretical calculations were performed by using the Ogg–
McCombe effective Hamiltonian which explicitly takes non-
parabolicity/anisotropy effects of the conduction band into
account. The present theoretical results for the electron g‖
factor of GaAs–Ga0.65Al0.35As cylindrical QWWs were found
to be in good agreement with previous calculations [5].
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Appendix

As mentioned before, the expansion (4) is used to
solve the Schrödinger equation by turning the differential
problem into an algebraic one, i.e., equation (6), which
implies a diagonalization of a square matrix with a finite
number of elements, with components given by H jk

ms =
〈φk( �ρ)|Ĥms |φ j( �ρ)〉, and with eigenvalues being the electron-
state energies En(ms) obtained for a given projection of the
electron spin (ms =↑ or ms =↓) parallel or antiparallel to
the applied magnetic field. The number of base functions in
the expansion is determined by the acceptable convergence
of the eigenvalues. The matrix elements associated with the
constant and �K-dependent terms in Ĥms may be computed
in a relatively easy way, whereas calculations of the matrix
elements associated with the electron-confining potential
V (x, y) and with the term ± 1

2 g(x, y)μB B require a more
sophisticated procedure.

For a GaAs–Ga1−x Alx As QWW the electron-confining
potential is given by

V ( �ρ) =
{

0 if 0 < ρ < R

V0 if ρ > R,
(A.1)

where V0 is the conduction-potential height. In addition,

1
2 g( �ρ)μB B = 1

2μB B

{
gw if 0 < ρ < R

gb if ρ > R,
(A.2)

or, equivalently,
1
2 g( �ρ)μB B = 1

2 gwμB B + 1
2μB B

×
{

0 if 0 < ρ < R

gb − gw if ρ > R,
(A.3)

where gw and gb are the electron Landé factors for GaAs and
Ga1−x AlxAs, respectively. The matrix elements of (A.3) are

therefore the sums of a diagonal contribution 1
2 gwμB B and the

matrix elements of a function which depends on the coordinate
ρ as the confining potential does.

We have derived a general expression for finding the
matrix elements corresponding to an arbitrary function F =
F(ρ) which is zero in the GaAs cylindrical QWW and takes
the finite value F0 �= 0 in the Ga1−x AlxAs barriers, i.e.,

F(ρ) =
{

0 if 0 < ρ < R

F0 if ρ > R.
(A.4)

According to (5) the matrix elements of F are given by

〈φnk ,lk |F |φnk′ ,lk′ 〉 = F0δlk ,lk′

∫ +∞

ξ0

ξ Flk
nk
(ξ)Flk

nk′ (ξ) dξ, (A.5)

where ξ = ρ√
2lB

, ξ0 = R√
2lB

,

Flk
nk
(ξ) = αnk ,lk ξ

|lk |e− 1
2 ξ

2
L|lk |

nk

(
ξ 2

)
, (A.6)

and

αnk ,lk = 2
√
πlB Ank ,lk =

[
2nk !

(nk + |lk |)!
] 1

2

. (A.7)

By performing the change of variable u = ξ 2 in (A.5) we
have

〈φnk ,lk |F |φnk′ ,lk′ 〉 = F0δlk ,lk′ Ink ,nk′ (lk, ξ0,+∞), (A.8)

where

In,n′(l, a, b) =
∫ b2

a2

f l
n(u) f l

n′(u) du, (A.9)

and

f l
n(u) =

√
n!

(n + |l|)!u
1
2 |l|e− 1

2 uL|l|
n (u). (A.10)

The expression (A.9) may be solved analytically. After
some mathematical manipulations, one may see that the off-
diagonal elements (n �= n′) of In,n′ are given by

In,n′(l, a, b) = 1

n′ − n

[√
n′(n′ + |l|) f l

n(u) f l
n′−1(u)

− √
n(n + |l|) f l

n′(u) f l
n−1(u)− (n′ − n) f l

n′(u) f l
n(u)

]b2

a2

,

(A.11)

where the artificial condition f l
−1(u) = 0, for all values of the

real number u and the integer number l, is required in order to
appropriately include the cases n = 0 or n′ = 0. For n = n′,
we have

In,n(l, a, b) =
[

2n + |l|
n

√
n

n + |l| f l
n(u) f l

n−1(u)

− f l
n(u) f l

n(u)− f l
n−1(u) f l

n−1(u)

]b2

a2

+ In−1,n−1(l, a, b)

(A.12)

with the initial condition

I0,0(l, a, b) = 1

|l|!
[



(|l| + 1, a2
) − 


(|l| + 1, b2
)]
,

(A.13)
where 
(x, y) is the incomplete Gamma function [19].
According to the formulas (A.11)–(A.13), the matrix elements
of F may be computed through expression (A.8).
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